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ABSTRACT 

Computer simulations are often complex and computationally expensive. When properly 
developed, reduced-order models (ROMs) can overcome these challenges by providing a 
computationally efficient surrogate that accurately captures the effects of an underlying high-
fidelity thermal model (e.g. Thermal Desktop®). ROMs can then provide thousands of simulation 
results in seconds which enables evaluation of large design spaces. A reduced-order modeling 
approach to predict spacecraft output responses for a set of input factors was developed. It is 
based on Latin Hypercube sampling and Gaussian Process regression modeling. This approach 
was successfully applied to a broad range of applications including the Orion Crew Exploration 
Vehicle and a nominal Hex Spacecraft Bus. Results compared favorably to the underlying Thermal 
Desktop® model. This approach was developed into software tools that provide analysis features 
such as screening studies, optimization, and response surface plotting. 

INTRODUCTION 

Spacecraft Thermal Control Subsystems (TCS) are commonly evaluated using high-fidelity, 
powerful modeling tools. Capable of simulating a near limitless range of conditions, these tools 
enable thermal engineers to examine a broad trade space. However, these computer 
experiments can be computationally expensive. Nominal thermal models, taking days to months 
to develop, can have run times on the order of hours. Comparing and evaluating multiple TCS 
design parameters amplifies these timelines. When built to evaluate several variables, these 
costs can become challenging. ROMs have the potential to help alleviate this burden. When 
properly developed, ROMs provide a computationally efficient surrogate that accurately captures 
the effects of an underlying high-fidelity model (e.g. Thermal Desktop®). ROMs can then provide 
thousands of simulation results in seconds which enables evaluation of large design spaces 
consisting of several variables. A ROM scheme was developed specifically for Thermal Desktop®. 
The following paper provides a brief overview of how ROMs are developed and provides details 
of how that approach is applied to the Thermal Desktop® environment. Finally, case studies are 
provided to demonstrate the approach.  

REDUCED-ORDER MODEL DEVELOPMENT 

ROMs were developed using a statistical scheme based on sampling and data fitting an 
underlying Thermal Desktop® model. This approach is considerably different than nodal 
reduction methods in that it relies on a set of high-fidelity simulations (i.e. training data) to 
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generate the ROM. In doing this, the proposed approach is robust and can be easily applied to 
other problem classes, model types, and software packages. 

The first step in developing a ROM is carefully selecting sampling points. Although full-factorial 
approaches examine all combinations of variables, they do so only at extreme values (i.e. design 
space boundaries). Consequently, interior points are overlooked, and ROMs can often fail far 
from the boundaries. Therefore, space-filling designs were utilized to efficiently identify and 
evaluate interior points that would provide improvements in the reduced-order model. Space-
filling designs attempt to efficiently evaluate a design space for a given number of computer 
simulations. Design approaches include: sphere packing, Latin Hypercube Sampling (LHS), 
uniform design, maximum entropy, and the Gaussian-Process IMSE designs1. LHS approaches are 
the most commonly used for computer experiments1; consequently, it was selected as the basis 
for developing ROMs under the current work. 

An LHS algorithm was developed based on concepts of the Maximin Method (full details are 
provided by Hengeveld and Biskner2). Through research and analysis, the Maximin Method has 
proven to be the best and most efficient method,3 as it is a simple and effective design to 
implement and the linearity of the method results in short run times. The Maximin Method 
maximizes the minimum distance between all sampling points4.Testing was performed on the 
LHS algorithm with Maximin optimization, with point-to-point distance being used as a figure of 
merit to compare algorithms. As optimizing the space becomes computationally difficult for 
higher dimensions, the Euclidean distance between points can be used as an effective measure 
to calculate point-to-point distance3. 
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In order to test the LHS algorithm, an example design space was created and filled by seven 
sampling algorithms (including the developed LHS algorithm). Sampling points were generated 
for a 64 x 6 matrix, with the six columns representing variables. These six variables and their 
range of values were chosen as they effectively represent a typical ROM’s design space. This 
design space was tested against JMP, a statistical software package, using the following seven 
sampling algorithms: LoadPath’s LHS algorithm, nominal LHS algorithm, sphere packing, uniform 
sampling algorithm, maximum entropy algorithm, Gaussian Process IMSE Optimal sampling 
algorithm, and Fast Flexible Filling sampling algorithm. Resulting sampling points for each 
algorithm were evaluated by calculating average distance between points for the sampling 
algorithm (Table 1). The developed LHS algorithm did not provide the best results (higher scores 
are better) but did compare favorably to many commercially available algorithms. Future work 
will examine alternative algorithms (e.g. sphere packing approaches) to improve the sampling 
methods. 
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Table 1. Sampling Algorithm Comparison Results 

Sampling Algorithm Average distance between points 

LoadPathôs Latin Hypercube Sampling algorithm 87.762 

nominal LHS 90.290 

sampling with sphere packing 123.39 

uniform sampling 88.379 

sampling with maximum entropy 91.968 

Gaussian Process sampling IMSE Optimal 61.285 

Fast Flexible Filling sampling 95.842 
  

Data fitting was achieved using Gaussian process (GP) regression methods. Introduced for 
computer experiments by Sacks, Welch, Mitchell, and Wynn4, this approach is desirable in 
computer experiments since they provide an exact fit to the training data and require only k+1 
parameters, where k is the number of input factors. GPs do not impose a specific model structure 
on the underlying function, ( )f x , being modeled5. Instead, a Gaussian prior is placed on the 

range of possible functions that could represent the mapping of input factors x  to output 
responses y . The Gaussian prior incorporates knowledge about the underlying function in the 

data, where available, and is specified using the GP covariance function which provides a 
relationship between training data. Although several approaches can be utilized for this 
correlation structure, the approach used the squared exponential (SE) covariance function, one 
of the most common1. As such, GP modeling is a non-parametric modeling technique, where the 
training data are used to discover the model properties in a supervised manner. Details of the 
implemented GP method can be found from previous work of the authors2. 

THERMAL DESKTOP® AND VERITREK 

Using the previously described sampling and data fitting approaches, a ROM creation framework 
was developed for Thermal Desktop®. The Veritrek software suite consists of a Creation Tool and 
Exploration Tool. The Creation Tool (Figure 2) bridges the gap between detailed high-fidelity 
models and ROMs to more efficiently evaluate different TCS design parameters and trade-offs.  

A ROM can be created using this tool by varying user-specified input parameters for selected case 
sets in Thermal Desktop®, fitting the ROM to the outputs requested from the Thermal Desktop® 
model, and then validating the ROM by comparing different combinations of inputs to the 
original model. The end-result is a set of files that contain the details and fitting coefficients used 
to define the ROM. The ROM can then be easily imported into the Exploration Tool, to obtain 
thermal analysis results in near real-time. The ROM creation process for Thermal Desktop® 
involves several steps. 

1. The first step in the ROM creation process is to select the Thermal Desktop® model file to 

be used as the high-fidelity thermal model, from which the surrogate ROM is developed 

(Figure 1). 
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2. Next, input factors and their ranges are selected that will be included in the ROM (Figure 

2). These input factors represent the variables of interest for a userôs thermal analysis and 

include Thermal Desktop® symbols or case sets. The input factors and their range define 

the design space for ROM creation. 

3. The third step in the ROM creation process is to select output responses (Figure 3). This is 

performed in a similar fashion to the selection of input factors. The output responses 

represent the outputs of interest from a userôs Thermal DesktopÈ model and can be a node 

temperature or an entire submodel temperature, among many others. 

 

Figure 1. Selection of ROM name and Thermal Desktop® model inside of Veritrek. 

 

Figure 2. Selection of input factors from a Thermal Desktop® model inside of Veritrek.  
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4. The fourth step in the ROM creation process is to select the sampling and data-fitting 

algorithm to be used (Figure 4). Parameters can be adjusted such as number of 

training/validation runs per category and data-fitting lengthscales, among others. 

5. The fifth step involves the actual automated generation of the ROM. Thermal Desktop® 

runs are created based on the input factors, output responses, and sampling algorithm 

settings. The Creation Tool communicates with Thermal Desktop® using an Application 

Programming Interface (API) introduced in Thermal Desktop® 6.0. The API is provided 

via the Microsoft .NET framework and allows Windows applications written in the C# or 

VB.NET programming languages to interact with Thermal Desktop. These runs, along with 

their corresponding output response data, are grouped together as training data. The final 

 

Figure 3. Selection of output responses from a Thermal Desktop® model inside of Veritrek. 

 

Figure 4. Selection of sampling and data fitting algorithms inside of Veritrek. 
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ROM creation step includes running the generated training data through the user-specified 

data-fitting algorithm to effectively fit the ROM (Figure 5). 

 

6. The final step in creating a ROM 

is testing. In this step, the 

performance of the ROM is 

compared to that of the original 

high-fidelity Thermal Desktop® 

model. This involves solving 

several additional Thermal 

Desktop® runs, computing the 

estimated results from the ROM 

using the same inputs, and 

comparing the outputs of both. 

Comparison plots include ROM 

versus Thermal Desktop® 

results (Figure 6). In addition to 

these comparison plots, ROM 

verification and validation is also 

shown through performance metrics. Metrics include the ROMôs mean of residual and 

standard deviation of the residual compared to Thermal Desktop® outputs. 

7. The Exploration Tool (Figure 7) provides a framework for visualizing and analyzing 

developed ROMs. In addition to typical toolbars, this software provides a session manager, 

input factor pane, and output response pane. The Session Manager is used as an 

organizational tool, as each group of analyses is stored into Session-trees, which are 

recorded for quick and easy access within the Session Manager. The input factor pane 

allows for the selection of different variable and variable values when performing an 

analysis, and the output response pane displays graphical or numerical results. 

 

Figure 5. Automated ROM creation using Thermal Desktop® runs inside Veritrek.  

 

Figure 6. Testing comparing ROM and Thermal 
Desktop® results. 
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Five analysis features are available in the Veritrek Exploration Tool and include: point analysis, 
factor sweep analysis, surface plot analysis, screening analysis, and optimization analysis. The 
following section provides two case studies and examples of several of these analysis features. 

EXAMPLES AND APPLICATIONS 

Orion Crew Exploration Vehicle (CEV) 

A simplified Orion Crew Exploration Vehicle (CEV) 
thermal model, developed in Thermal Desktop®, was 
converted into a ROM. The CEV thermal model consists 
of an external fluid loop and detailed heat rejection 
system (i.e. radiators) (Figure 8). Simulating internal 
heat development of the crew module is done through 
a single heat source (i.e. symbol QLOAD). The fluid loop 
setpoint (i.e. temperature of FLOW.487) is controlled 
via a PID to control the flow (via a bypass loop) through 
a regenerative heat exchanger. Heat dissipation is 
rejected to a constant temperature environment. The 
Orion CEV thermal model consists of several thermal 
submodels (e.g. radiator submodel) and one fluid submodel (i.e. FLOW). Based on discussion with 
NASA personnel, evaluation of the thermal model, and results of a factor screening effort, the 
following input factors and corresponding ranges were selected for use in subsequent ROM 

 

Figure 7. Typical screen inside the Veritrek Exploration Tool. 

 

Figure 8. Illustration of Simplified Orion 
CEV Thermal Desktop® Model. 
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efforts (Table 2). Also included are nominal values (i.e. values that were utilized in the supplied 
thermal model). 

Table 2. Summary of Input Factors 

No. Input Factor  Symbol Name Range 

1 Working Fluid Not Applicable 
Dynalene HC 50, Galden 

HT 170, HFE 7000 

2 Regenerator Area per Node Aheat_HFC 0.5 to 2.0 m2 

3 Space Temperature TEMP_SPACE 0 K to 300 K 

4 Radiator Emissivity Opt_Epsilon 0.7 to 1.0 

5 Radiator Fin Efficiency rad_fin_eff 0.7 to 1.0 

6 Tube Inside Diameter RadTubD 
0.003175 m (0.125ò) to 

0.005080 m (0.200ò) 

7 Fin-to-Tube Conductance TContact 50 to 1000 

8 Regenerator Thermal Mass per Node HX_THERMAL_MASS 500 to 4,000 J/K 

9 Heatload QLOAD 0 to 4,000 W 

 

Based on discussion with NASA personnel and evaluation of the thermal model, the following 
primary output responses were selected for use in subsequent reduced-order modeling efforts 
(Table 3). 

Table 3. Summary of Primary Output Responses 

No. Output Response Symbol Name Description 

1 Set-point Temperature FLOW.487 Temperature of FLOW.487 at end of simulation. 

2 Fluid Hydraulic Power Varies Calculated fluid hydraulic power based. 

3 Pressure FLOW.365 Pressure at FLOW.365 

4 Pressure FLOW.2262 Pressure at FLOW.2262 

5 Pressure FLOW.2272 Pressure at FLOW.2272 

6 Flow Rate --- System flow rate 

7 Average Radiator æT Varies Average æT as a result of TContact of 7 radiators 

 

Based on the LHS algorithm and the developed high-resolution thermal model, training data was 
obtained. This data provided the foundation upon which the ROM was developed using GP 
methods. For the HFE 7000 working fluid, the ROM predicted temperatures (i.e. set-point and 
average radiator ∆T) with a maximum residual mean of 0.6 K and standard deviation of 3.7 K. The 
model predicted fluid hydraulic power with a maximum residual mean of 0.02 W and standard 
deviation of 0.09 W. Finally, it predicted pressures with a maximum residual mean of 0.08 kPa 
and standard deviation of 0.6 kPa with a maximum percent difference standard deviation of 0.6%. 
The ROM did not perform well in capturing time to steady-state and percent bypass as indicated 
by high residuals and % difference values. In fact, maximum and minimum percent bypass values 
were unrealistic (i.e. greater than 100% and less than 0%, respectively). Results indicated that 
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the ROMs provide a useful surrogate for smooth functions. Non-smooth functions (e.g. Time to 
Steady State) challenge ROM predictive capabilities. However, these might be overcome by 
providing higher sampling densities around these discontinuities.  

The Orion CEV ROM that 
was developed could be 
used to perform many 
different TCS design 
trade-offs. Using the 
Exploration Tool, a 
screening analysis study 
was performed to 
determine which input 
factor has the most 
significant impact on the 
set-point temperature of 
the CEV. Results from a 
screening analysis were 
obtained within seconds. 
Example results can be 
seen in Figure 9. From 
these instantaneous 
results, it can be 
determined that Space 
Temperature and 
Heatload have the most 
significant impact on the 
Set-point Temperature, while Working Fluid, and Radiator Emissivity also impact the Set-point 
Temperature. 

In addition to the screening analysis study, a factor sweep study was performed to observe in 
detail how changes in a single input factor impact output results for a certain design case. This 
factor sweep analysis was performed using the Exploration Tool, by setting all input factors to a 
certain value and observing how changes to a single input factor impact an output response. For 
example, a certain design revision of the Orion CEV may call for a specific Tube Inside Diameter 
and Radiator Fin Efficiency, while another design revision may involve a different Tube Inside 
Diameter and Radiator Fin Efficiency; however, the emissivity of the radiator may not be known 
in either of these revisions. In this case, a factor sweep analysis can be used to observe how 
changes to radiator emissivity impacts fluid hydraulic power for each of these design revisions. A 
table of example input factor settings for each of these design revisions (REVA and REVB) can be 
seen in Table 4. Results from this example of a factor sweep analysis are shown in Figure 10. 

 

 

 

Figure 9. Screening Analysis results using the Orion CEV ROM.  
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Table 4. Summary of Input Factor Setting for Orion CEV Factor Sweep Analysis 

 
Working 

Fluid  

Regenerator 

Area per Node 

Radiator Fin 

Efficiency 

Tube Inside 

Diameter 

Fin-to-Tube 

Conductance 

Coefficient 

Heat 

load 

  [m2] [---] [m]  [---] [W]  

REVA DYN HC 50 0.5 0.9 0.004 50.0 1000.0 

REVB DYN HC 50 0.5 0.8 0.005 50.0 1000.0 

 

From these results, it can be seen that REVA always yields higher Fluid Hydraulic Power compared 
to REVB, but that both design revisions experience a maximum Fluid Hydraulic Power at a radiator 
emissivity value of about 0.9. This result may help a thermal engineer decide which optical 
coating to use for the radiator. This analysis could be easily expanded to include: other working 
fluids, additional tube inside diameters, and a range of heat loads, to name a few. 

  

Figure 10. Factor Sweep Analysis results using 
the Orion CEV ROM. 

Figure 11. Surface Plot Analysis results 
using the Orion CEV ROM. 

 

This analysis can be taken a step further, and a Surface Plot Analysis could be used to try and 
determine an overall radiator design that will maximize the Fluid Hydraulic Power of the Orion 
CEV. From within the Veritrek Exploration Tool, a Surface Plot Analysis can be used to observe 
the impact that two input factors have on a single output response. In this case, both Radiator 
Emissivity and Radiator Fin Efficiency can be analyzed with Fluid Hydraulic Power as the output 
response. A Surface Plot Analysis performs two individual factor sweeps and plots them together 
as a 3D plot, which can be seen in Figure 11. Results again show that a maximum Fluid Hydraulic 
Power occurs at a radiator emissivity value of about 0.9, but that this can also be coupled with a 
Radiator Fin Efficiency of about 0.92 to achieve an overall radiator design that maximizes Fluid 
Hydraulic Power. Again, this analysis could be expanded to include different working fluids, heat 
loads, etc. The screening analysis, factor sweep analysis, and surface plot analysis are just three 
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examples of effective thermal design studies that can be performed instantaneously with a 
reduced-order model. 

CONCLUSIONS 

When properly developed, reduced-order models (ROMs) can overcome challenges by providing 
a computationally efficient surrogate that accurately captures the effects of an underlying high-
fidelity model (e.g. Thermal Desktop®). ROMs can then provide thousands of simulation results 
in seconds which enables evaluation of large design spaces. A ROM scheme was developed in 
combination with Thermal Desktop®. The approach utilizes a statistical sampling scheme (as 
opposed to nodal minimization) that relies on Latin Hypercube Sampling (LHS). Test results 
showed that the developed LHS compared favorably to many commercially available algorithms; 
however, improvements could be made. Following sampling, a statistical data-fitting scheme that 
relies on Gaussian Process (GP) techniques was utilized to generate the ROM. 

A ROM creation framework was developed for Thermal Desktop® and includes the Veritrek 
Creation and Exploration Tools. Together, this software suite enables end-users to develop and 
use ROMs from Thermal Desktop® models. The tools provide a semi-automated method for 
generating ROMs and provide users with five analysis features including: point analysis, factor 
sweeps, surface plots, screening, and optimization studies. This approach was successfully 
applied to two applications: the Orion Crew Exploration Vehicle and a nominal Hex Spacecraft 
Bus. Results compared favorably to the underlying Thermal Desktop® model and several analysis 
approaches were developed and implemented. In the future, additional features and capabilities 
will be explored and added based on the foundation of this work. Examples might include: 
additional sampling and data fitting schemes, implementation of uncertainty quantification 
methods, ROM/test correlation capabilities, and/or ROMs for controller designs. 
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NOMENCLATURE, ACRONYMS, ABBREVIATIONS 

D  Euclidean distance between points 
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k  number of input factors 

N  number of points 

GP Gaussian Process 

IMSE Integrated Mean-Square Error 

LHS Latin Hypercube Sampling 

ROM Reduced-Order Model 

TCS thermal control subsystem 
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